
Object-Oriented Programming

 4 - 1

OBJECT-BASED
PROGRAMMING

LANGUAGES
-- Ada --

Ada Program Units Reserved Words Blocks and Subprograms

Main Programs Package STANDARD Packages

Ada Program Unit Lib Types Generic Units

Character Sets Operators Tasks

Lexical Units Statements Exceptions

Objectives of Module 4

● Present and discuss the syntax of the Ada Programming Language

● Present and discuss the features of Ada which support object-oriented programming

Suggested Reading

David J. Naiditch, Rendezvous with Ada: A Programmer's Introduction, John Wiley &

Sons, 1989, ISBN 0-471-61654-0

Grady Booch, Software Engineering with Ada, 2nd Edition, Benjamin/Cummings

Publishing Company, 1987, ISBN 0-8053-0604-8

Grady Booch, Software Components with Ada, Benjamin/Cummings Publishing

Company, 1987, ISBN 0-8053-0610-2

Michael B. Feldman and Elliot B. Koffman, Ada Problem Solving and Program Design,

Addison-Wesley Publishing Company, 1992, ISBN 0-201-50006-X

Karl A. Nyberg (editor), The Annotated Ada Reference Manual, 2nd Edition, Grebyn

Corporation, 1991, ISBN unknown

Object-Oriented Programming

 4 - 2

Ada Program Units

Ada source file -- contains one or more Ada program units

An Ada Program or System is composed of one or more program

units, where a program unit is:

●● a subprogram

●● a package

●● a task

●● a generic unit

Each program unit is divided into two parts:

●● a specification, which defines its interface to the outside world

●● a body, which contains the code of the program unit

When an Ada compiler runs, it compiles an Ada source file. This Ada source

file contains one or more Ada program units. The compiler places these

units into an Ada program unit library if they compile successfully.

Later, when an Ada linker (also commonly called a binder) is run, an

executable is produced from program units within an Ada program unit

library. The mainline is specified to the linker, and the linker sets this unit

up to begin execution. An Ada mainline is always an Ada procedure (a

subprogram unit).

Program units can be nested -- they can contain zero or more other program

units.

Object-Oriented Programming

 4 - 3

Program Units: SUBPROGRAM

A subprogram is an expression of sequential action.

Two kinds of subprograms exist:

●● procedure

●● function

An example of a procedure subprogram:

type REAL_ARRAY is array (1..20) of FLOAT;

procedure SORT (ITEMS : in out REAL_ARRAY); -- spec

procedure SORT (ITEMS : in out REAL_ARRAY) is -- body

-- definitions of types, objects, exceptions, and

-- other program units (subprograms, packages, tasks,

-- and generic units) local to SORT

begin

-- body of code which implements SORT

null; -- no code for now

end SORT;

An example of a function subprogram:

function IS_ZERO (ITEM : in FLOAT) return BOOLEAN: -- spec

function IS_ZERO (ITEM : in FLOAT) return BOOLEAN is -- body

-- definitions of types, objects, exceptions, and

-- other program units (subprograms, packages, tasks,

-- and generic units) local to IS_ZERO

begin

null; -- no code for now

end IS_ZERO;

Object-Oriented Programming

 4 - 4

Program Units: PACKAGE

A package is:

●● a collection of computational resources, including data

types, data objects, exception declarations, and other

program units (subprograms, tasks, packages, and generic

units)

●● a group of related items

In object-oriented programming, a package contains the definition of a particular object or a class of

objects. This includes the member data and all methods associated with the object or class.

Packages are fundamental to Ada. For instance, Ada by itself has no Input/Output capabilities, so

the package TEXT_IO is provided with all Ada compilers to provide input/output capabilities for

characters, strings, floating point numbers, fixed point numbers, integers, and user-defined

types.

An example of an Ada package specification --

package Console_Terminal_Screen is

-- definitions of types, objects, exceptions, and other program

-- units provided to external program units by this package

subtype ROW is INTEGER range 1..24;

subtype COLUMN is INTEGER range 1..80;

procedure Clear_Screen;

procedure Position_Cursor (At_Row : in ROW;

 At_Column : in COLUMN);

procedure Write (Value : in STRING);

end Console_Terminal_Screen;

Object-Oriented Programming

 4 - 5

Program Units: TASK

A task is:

●● an action implemented in parallel with other tasks

●● a code item which may be implemented on one

processor, a multiprocessor (more than one CPU), or a

network of processors

●● composed of a specification and a body

An example of a task specification --

task Terminal_Driver is

-- entry points to the task specify how other

-- tasks communicate with this task

entry Get (Char : out CHARACTER);

entry Put (Char : in CHARACTER);

end Terminal_Driver;

Object-Oriented Programming

 4 - 6

Program Unit: GENERIC UNIT

A generic unit is:

●● a reusable software component

●● a special implementation of a subprogram or package which

defines a commonly-used algorithm in data-independent

terms

An example of a generic subprogram is --

generic -- specification

type ELEMENT is private; -- thing manipulated

procedure Exchange (Item1 : in out ELEMENT;

 Item2 : in out ELEMENT);

procedure Exchange (Item1 : in out ELEMENT;

 Item2 : in out ELEMENT) is -- body

Temp : ELEMENT;

begin

Temp := Item1;

Item1 := Item2;

Item2 := Temp;

end Exchange;

Object-Oriented Programming

 4 - 7

Procedures as Main Programs

Ada does not have a separate construct for a main program.

Instead, Ada program units (subprograms, packages, tasks, and

generic units) are compiled into an Ada library and then, at
some later time, one of the procedures is selected to be the
mainline procedure at which execution of the program is to

start.

A main procedure has no parameters.

Object-Oriented Programming

 4 - 8

Ada and the Ada Program Unit Library

Ada Program Unit Libraries
Current

Ada Program Unit Library

Ada Compiler

Source File 1
(package, procedure)

Source File 2
(2 procedures)

Source File 3
(generic)

Note that the Ada compiler outputs into the current Ada program unit library as its

only target. The compiler does not create .o files necessarily.

Reuse is accomplished by accessing existing Ada program unit libraries, thereby

gaining use of the program units contained in them.

All Ada compilers provide a common program unit library that contains the

following packages:

package STANDARD; -- contains integers, floats, and operations

package TEXT_IO; -- support for I/O

package SYSTEM; -- ability to address memory

package SEQUENTIAL_IO; -- support for sequential I/O only

package DIRECT_IO; -- support for random I/O only

package IO_EXCEPTIONS; -- errors which may come up in I/O

package LOW_LEVEL_IO; -- special platform-specific I/O

Object-Oriented Programming

 4 - 9

Creating an Executable

Ada Program Unit Libraries
Current

Ada Program Unit Library

Ada Binder

Executable
Based on an Ada

Procedure

The Ada Binder builds an executable from a procedure that is located anywhere in

the Ada libraries. A chain of program units is assembled to create this

executable:

● the mainline procedure comes first, and this procedure requires certain

program units for support (it depends upon these program units and

they are named in its with statements)

● the program units withed by the mainline procedure are incorporated

into the executable, and these program units may with other program

units

● the next layer of program units is included, and so on as they with yet

other program units

● the Ada runtime system, which supports initialization, exception

handling, tasking, and other features of the language may either be

included in the executable or tied into by the executable

The with statement in Ada causes one program unit to gain access to another. An

example:

with Text_IO;

procedure IO_Demo is -- call Put_Line function in Text_IO

begin

 Text_IO.Put_Line("This line is written to the console");

end IO_Demo;

Object-Oriented Programming

 4 - 10

Basic and Extended Character Sets
The Basic Character Set (BCS) is one of two character sets used by Ada

programs:

●● The BCS was designed to facilitate transportability between computer

systems.

●● The BCS consists of:

❍❍ uppercase letters only: A-Z

❍❍ digits: 0-9

❍❍ special characters: " # ' () * + - / , . : ; < = > _ | &

❍❍ the space character

The Extended Character Set (ECS) maps to the 95-character ASCII (American

Standard Code for Information Interchange) set:

●● The ECS consists of:

❍❍ all characters in the BCS

❍❍ more special characters: ! ~ $? @ [] \ ` { } ^ %

❍❍ lower-case letters: a-z

Object-Oriented Programming

 4 - 11

Package ASCII

Package ASCII within the supplied package STANDARD provides:

●● names for the non-printing ASCII characters

●● names for the characters in the ECS which are not a part of the BCS

Examples:

c1 : character := ASCII.NUL;

c2a : character := '#';

c2b : character := ASCII.SHARP; -- same as c2a

c3a : character := 'a';

c3b : character := ASCII.LC_A; -- same as c3a

The predefined package STANDARD is the only Ada package which is

automatically withed by every Ada program unit without the programmer

having to explicitly do so. Consequently, package ASCII is always available.

A sample program:

with Text_IO; -- for output

procedure ASCII_Demo is

begin

 Text_IO.Put("Ring the Bell: "); -- Put for a string

 for I in 1 .. 20 loop

 Text_IO.Put(ASCII.BEL); -- Put for a character

 end loop;

 Text_IO.New_Line;

end ASCII_Demo;

Object-Oriented Programming

 4 - 12

Lexical Unit

A Lexical Unit is a basic token of the Ada language which is built
from the character sets:

●● comments

-- this is a comment, starting at the -- and

-- going to the end of the line

●● identifiers (a letter followed by zero or more letters, digits, and
underscores, and case is not significant)

A THIS_IS_A_TEST FACTOR_44

hello_world usart_status_flag

package -- this is a reserved word

●● numeric literals (real/floats and integers in bases 2 to 16)

45 2.7 9.9e-56 1_000_000 16#F.2C#

2#0010# 7#16# 8#1_377# 16#0c2b# 16#CC_48#

3.14159_26535_89793_23846_26434

Object-Oriented Programming

 4 - 13

Lexical Unit, Continued

●● character literals

'A' '*'

''' -- the character '

●● strings

"hello, world"

"" -- the empty string

"""" -- a string whose content is "

●● delimiters (single and compound)

' () * + , - . / : ; < = > | &

=> .. ** := /= >= <= << >> < >

Notes:

●● Any number of spaces (and lines) may separate lexical units

●● A lexical unit must fit on one line

Object-Oriented Programming

 4 - 14

Reserved Words

Reserved words are identifiers which may be used in only certain

contexts:

●● They may NOT be used as variables, enumeration literals,

procedure names, etc.

●● They may be a part of strings ("my package is in").

●● They may be a part of other lexical units (e.g., PACKAGE_52 is

O.K.).

Complete List of Ada Reserved Words

abort declare generic of select

abs delay goto or separate

accept delta others subtype

access digits if out

all do in task

and is package terminate

array else pragma then

at elsif limited private type

end loop procedure

begin entry use

body exception mod raise

exit range when

case new record while

constant for not rem with

function null renames

return xor

reverse

Object-Oriented Programming

 4 - 15

Package STANDARD
Package STANDARD is automatically withed and used by all Ada program

units.

Package STANDARD contains:

●● type BOOLEAN and the associated operations

●● type INTEGER and the associated operations

●● type FLOAT and the associated operations

●● the types universal real, universal integer, and universal fixed along

with their associated operations

●● type CHARACTER and the associated operations

●● package ASCII (provides alternate character representations)

●● subtype NATURAL and subtype POSITIVE

●● type STRING and the associated operations

●● type DURATION (a fixed point type used to represent time)

●● several predefined exceptions

● type BOOLEAN and associated operations:

= /= < <= > >=

and or xor not

● type INTEGER and associated operations:

= /= < <= > >=

+ - abs (unary operations)

+ - * / rem mod (binary operations)

**

● type FLOAT and associated operations:

= /= < <= > >=

+ - abs (unary operations)

+ - * / (binary operations)

** (INTEGER exponent)

● the types universal real, universal integer, and universal fixed and operations:

universal real := universal integer * universal real

universal real := universal real * universal integer

universal real := universal real / universal integer

universal fixed := user-defined fixed * user-defined fixed

universal fixed := user-defined fixed / user-defined fixed

● types CHARACTER and STRING:

= /= < <= > >=

& (for both char and string)

● subtype NATURAL is INTEGER

range 0 .. INTEGER'LAST;

● subtype POSITIVE is INTEGER

range 1 .. INTEGER'LAST;

● predefined exceptions:

CONSTRAINT_ERROR

PROGRAM_ERROR

TASKING_ERROR

NUMERIC_ERROR

STORAGE_ERROR

Object-Oriented Programming

 4 - 16

Type Definitions and
Object Declarations

A type is a class of objects which characterizes:

●● a set of values which objects of that type may take on

●● a set of attributes (e.g., INTEGER'LAST is the last integer)

●● a set of operations which may be performed on objects of that type

Several classes of types are available in Ada:

●● scalar data types ●● access data types

❍❍ integer ●● private data types

❍❍ real (floating point and fixed point) ●● subtypes

❍❍ enumeration ●● derived types

●● composite data types

❍❍ array

❍❍ record

Object-Oriented Programming

 4 - 17

Scalar Data Types
●● integer:

INTEGER -- a predefined type

NATURAL -- a predefined type, >= 0

POSITIVE -- a predefined type, >= 1

type INDEX is range 1..50; -- user-defined

●● real (floating point and fixed point):

FLOAT -- a predefined type

type MASS is digits 10; -- 10 sig digit user-defined float

type VOLTAGE is delta 0.01 -- a user-defined fixed point

 range 0.0 .. 50.0;

●● enumeration:

BOOLEAN -- a predefined type (FALSE, TRUE)

CHARACTER -- a predefined type

type COLOR is (RED, GREEN, BLUE); -- user-defined

Object-Oriented Programming

 4 - 18

Numeric and Discrete Types

Integer Real Enumeration

Numeric X X

Discrete X X

It is important to be able to distinguish

between numeric and discrete types

since only discrete types may be

used for loop variables.

Object-Oriented Programming

 4 - 19

Universal Types
●● The following classes of universal types exist:

❍❍ Universal Integer

❍❍ Integer Literals, e.g.

12

❍❍ Integer Named Numbers, e.g.

DOZEN : constant := 12;

❍❍ Universal Real

❍❍ Real Literals, e.g.

3.14159

❍❍ Real Named Numbers, e.g.

PI : constant := 3.14159_26535;

●● Clarification:

DOZEN : constant INTEGER := 12; -- type INTEGER

DOZEN : constant := 12; -- universal integer

Advantages of Universal Types:

● Universal Types do not have any practical size constraints

SPEED_OF_LIGHT : constant := 186_282;

 -- valid on even 16-bit machines (where INTEGER'LAST = 32_767)

● Code may execute faster: when named numbers are combined with other named

numbers or numeric literals, the resulting expression may be evaluated at

compilation time rather than run time

Expressions consisting of only named numbers or numeric literals are called literal

expressions. Named numbers may be initialized to literal expressions but not to non-

literal expressions:

DOZEN : constant := 12;

BAKERS_DOZEN : constant := DOZEN + 1;

 -- OK because "DOZEN + 1" is a literal expression

DOZEN : constant INTEGER := 12;

BAKERS_DOZEN : constant := DOZEN + 1;

 -- not OK because "DOZEN + 1" is an expression based on an INTEGER variable

Object-Oriented Programming

 4 - 20

Subtypes and Derived Types
●● Subtypes are types created from an existing "parent" type which

are distinct but compatible with the parent. Objects of a subtype

may be mixed with objects of the parent type in an expression:

subtype SINT is INTEGER range 1..10;

I : Integer; SI : SINT;

SI := 5; I := 10 + SI;

●● Derived types are types created from an existing "parent" type

which are distinct and separate (incompatible) from the parent:

type SINT is new INTEGER range 1..10;

I : Integer; SI : SINT;

SI := 5; I := 10 + SI; -- will raise an error at compile time

●● Derived types are different from subtypes:

❍❍ A derived type introduces a new type, distinct from its parent.

❍❍ A subtype places a restriction on an existing type, compatible

with its parent.

Derived types make a lot of sense, providing a check when mapping to the real

world. For instance, in the real world, you would never try to add something of

type SPEED (say, in miles per hour) to something of type TIME (say, in hours).

It simply does not make sense. Derived types in Ada prevent this kind of thing

from happening:

type SPEED is new FLOAT range 0.0 .. 1_000_000.0; -- MPH

type TIME is new FLOAT range 0.0 .. 24.0; -- HOURS

S : SPEED := 25.0; T : TIME := 12.00;

S := S + T; -- illegal, flagged at compile time

Object-Oriented Programming

 4 - 21

Arrays
An array is an object that consists of multiple homogenous components

(i.e., each component is of the same type).

An entire array is referenced by a single identifier:

type FLOAT_ARRAY is array (1..10) of FLOAT;

 -- type declaration

My_Float_Array : FLOAT_ARRAY;

 -- array reference and definition

Each component of an array is referenced by the identifier which

references the array being followed by an index in parentheses:

My_Float_Array(5) := 12.2; -- assign one element

for i in My_Float_Array'First .. My_Float_Array'Last loop

 My_Float_Array(i) := 0.0; -- initialize all elements

end loop;

Object-Oriented Programming

 4 - 22

Array Type Statement

The general syntax is:

type array_type_name is array (index_specification) of

element_type;

●● array_type_name is the name given to this type, not the name of a

specific array; specific arrays are declared later as array objects

●● index_specification is the type and value range limits, if any, of the
index

●● element_type is the type of the array elements

Examples of Arrays

type Color is (RED, GREEN, BLUE); -- an enumeration type (used later)

type VALUES is array (1..8) of FLOAT; -- a vector of 8 real numbers

My_Floats : VALUES; -- object definition

His_Floats : VALUES := (1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8);

 -- object definition with initialization

Zero_Floats : VALUES := (others => 0.0); -- initialized to 0.0

type CVAL is array (COLOR) of FLOAT;

 -- a vector of 3 real numbers indexed by RED, GREEN, and BLUE

My_Color_Values : CVAL; -- object definition

Reference_Color_Values : constant CVAL := (1.1, 2.2, 3.3);

 -- constant object declaration

type SCREEN_DOTS is array (1..1024, 1..1024) of COLOR;

My_CRT_Screen : SCREEN_DOTS := (others=> (others=> RED)); -- all RED

Object-Oriented Programming

 4 - 23

Array Aggregates
An entire array may be initialized by assigning it to an array aggregate.

type MENU_SELECTION is (SPAM, MEAT_LOAF, HOT_DOG, BURGER);

type DAY is (MON, TUE, WED, THU, FRI);

type SPECIAL_LIST is array (DAY) of MENU_SELECTION;

Specials:SPECIAL_LIST;

Specials := SPECIAL_LIST'(SPAM, HOT_DOG, BURGER, MEAT_LOAF, SPAM);

Specials := (SPAM, HOT_DOG, BURGER, MEAT_LOAF, SPAM);

Specials := (MON => SPAM,

 TUE => HOT_DOG,

 WED => BURGER,

 THU => MEAT_LOAF,

 FRI => SPAM);

Specials := (MON | FRI => SPAM,

 TUE | WED | THU => BURGER);

Specials := (MON .. WED => BURGER, others => MEAT_LOAF);

Object-Oriented Programming

 4 - 24

More Notes on Arrays
●● Arrays may have as many dimensions as desired.

●● So far, array types have been constrained (i.e., the number of elements in

the arrays have been determined in advance). In Ada, array types may also

be unconstrained, where the objects derived from these types are not

constrained until the definitions of these objects:

type FLOAT_ARRAY is array (NATURAL range <>) of FLOAT;

My_Array : FLOAT_ARRAY(1..10); -- 10 elements

His_Array : FLOAT_ARRAY(5..12); -- 8 elements

Zero_Array : constant FLOAT_ARRAY := (0.0, 0.0, 0.0); -- 3 elements

●● A STRING is an unconstrained array indexed by POSITIVE of CHARACTER

objects. The type STRING is predefined in the package STANDARD:

type STRING is array (POSITIVE range <>) of CHARACTER;

●● Once a STRING object has been defined, it may be assigned a value by using

array aggregate notation or by using quotes:

My_Name : STRING(1..4) := "John";

My_Name := ('J', 'i', 'm', ' ');

More Notes on STRING Objects

● A double quote may be placed into a string by using two double quotes in a row:

Message : STRING (1..4) := """Hi""";

● Strings are fixed in their length. Ada does not support any predefined variable-length strings,

but such strings can be implemented (see CS Parts):

Pet_Name : STRING(1..5);

Pet_Name := "Pete"; -- illegal because Pet_Name has 5 chars and "Pete" has 4

Pet_Name := "Repeat"; -- illegal for similar reasons

Pet_Name := "Pete "; -- OK (note trailing space)

Pet_Name(1..4) := "Jake"; -- OK due to slice

● Slices can be used to assign parts of a string:

Message(1..2) := "Hi";

● Although the size of a STRING variable is set by its constraint, the size of a STRING constant

may be inferred from the size of the aggregate assigned to it:

My_Pet : constant STRING := "Jake the Snake";

● Package TEXT_IO supports a STRING input procedure called GET_LINE which may be used

to input values into STRINGs. GET_LINE requires the name of the STRING object and a

variable of type NATURAL as parameters:

Input_Line : STRING(1..80); Input_Last : NATURAL;

Text_IO.Get_Line(Input_Line, Input_Last);

 -- Assume that the user types "Hello<CR>", where <CR> is the RETURN key

 -- Input_Line(1..5) = "Hello" and Input_Last = 5 is the result

Object-Oriented Programming

 4 - 25

Boolean Vectors

A boolean vector is a user-defined type which is a vector of BOOLEANs:

type BOOLEAN_VECTOR is array (POSITIVE range <>) of BOOLEAN;

A Boolean vector is the only type of array that can be operated on by the
logical operators and, or, xor, and not.

declare

 T : constant BOOLEAN := TRUE; F : constant BOOLEAN := FALSE;

 A : BOOLEAN_VECTOR (1..4) := (T, F, T, F);

 B : BOOLEAN_VECTOR (1..4) := (T, F, F, T);

 C : BOOLEAN_VECTOR (1..4);

begin

 C := not A; -- yields (F, T, F, T);

 C := A and B; -- yields (T, F, F, F);

 C := A or B; -- yields (T, F, T, T);

 C := A xor B; -- yields (F, F, T, T);

end;

Object-Oriented Programming

 4 - 26

Array Attributes and Operations
Some interesting array attributes are:

FIRST -- first index value LAST -- last index value

RANGE -- array'FIRST .. array'LAST LENGTH -- number of elements

These attributes apply to array objects (which are, of course, constrained)
and constrained array types. Operations on arrays are:

Operation Restrictions

Attributes (FIRST, etc) None

Logical (not, and, or, xor) Must be BOOLEAN vectors of same

 length and type

Concatenation (&) Must be vectors

Assignment (:=) Must be of the same size and type

Type Conversions Same size and component and index types

Relational (<,>,<=,>=) Must be discrete vectors of same type

Equality (=, /=) Must be of the same type

Object-Oriented Programming

 4 - 27

Record Types without Discriminants
The most basic kind of record is that declared without discriminants. The

general syntax of a record type declaration is:

type record_type_name is record

 record_components;

end record;

Example:

 type MY_RECORD is record

 I : Integer;

 F : Float;

 end record;

Object-Oriented Programming

 4 - 28

Record Types with Discriminants
Record types with discriminants may be used to define records to be of the

same type even though the kind, number, and size of the components
differ between individual records.

Variant records are those that differ from one another in the kind and

number of components. Example:

type RECORDING_MEDIUM is (PHONOGRAPH, CASSETTE, CD);

type MUSIC_TYPE is (CLASSICAL, JAZZ, NEW_AGE, FOLK, POP);

type RECORDING (Device : RECORDING_MEDIUM := CD) is record

 Music : MUSIC_TYPE;

 case Device is

 when PHONOGRAPH =>

 Speed : RPM;

 when CASSETTE =>

 Length : NATURAL;

 when CD => null;

 end case;

end record;

Object-Oriented Programming

 4 - 29

Access Types
●● Access types are used to declare variables (pointers) that access

dynamically allocated variables. A dynamically allocated variable is

brought into existence by an allocator (the keyword new).

Dynamically allocated variables are referenced by an access

variable, where the access variable "points" to the variable desired.

●● Example:

type INTEGER_ACCESS_TYPE is access INTEGER;

P1, P2 : INTEGER_ACCESS_TYPE;

P1 := new INTEGER; P1.all := 5;

P2 := P1;

P1:

P2:

Integer:

5<address>

<address>

Two pointers which
address the same

object.

In Ada, every pointer (access variable) has an initial value of null. This is the only

kind of data object in Ada that is initialized implicitly when it is created without the

user having to define the initialization.

Example:

type CHARACTER_ACCESS_TYPE is access CHARACTER;

CH1_Ptr : CHARACTER_ACCESS_TYPE; -- value is null by default

CH2_Ptr : CHARACTER_ACCESS_TYPE := null; -- made null explicitly

CH3_Ptr : CHARACTER_ACCESS_TYPE := new CHARACTER;

 -- character is created along with the access variable

CH4_Ptr : CHARACTER_ACCESS_TYPE := new CHARACTER'('A');

 -- character is created and initialized

CH : CHARACTER;

CH := CH4_Ptr.all; -- CH takes on the value 'A'

Object-Oriented Programming

 4 - 30

Representation Attributes
The following are attributes which may be applied to various entities in

order to determine some of their specifics:

●● ADDRESS -- reports the memory location of an object, program unit,

label, or task entry point

●● SIZE -- reports the size, in bits, of an object, type, or subtype

●● STORAGE_SIZE -- reports the amount of available storage for access

types and tasks; if P is an access type, P'STORAGE_SIZE gives the

amount of space required for an object accessed by P; if P is a task,
P'STORAGE_SIZE gives the number of storage units reserved for task

activation

●● POSITION (records only) -- reports the offset, in storage units, of a

record component from the beginning of a record

●● FIRST_BIT (records only) -- reports the number of bits that the first bit

of a record component is offset from the beginning of the storage unit

in which it is contained

●● LAST_BIT (records only) -- reports the number of bits that the last bit

of a record component is offset from the beginning of the storage unit

that contains the first bit of the record component

Object-Oriented Programming

 4 - 31

The 4 Representation Clauses

●● Length clauses -- establish amount of storage space used for objects

type DIRECTION is (UP, DOWN, RIGHT, LEFT);

for DIRECTION'SIZE use 2; -- 2 bits

●● Enumeration clauses -- specify the internal representation of enumeration

literals

type BIT is (OFF, ON);

for BIT'SIZE use 1;

for BIT use (OFF => 0, ON => 1);

●● Record Representation clauses -- associate record components with

specific locations in bit fields

●● Address clauses -- specify the addresses of objects

CPU_STATUS : Integer; -- define object

for CPU_STATUS use at 16#080#; -- define address

An example for records:

type BIT is (OFF, ON);

for BIT'SIZE use 1; for BIT use (0, 1);

type STATUS_WORD is record

 Carry_Bit : BIT;

 Overflow_Bit : BIT;

 Zero_Bit : BIT;

end record;

for STATUS_WORD'SIZE use 8;

for STATUS_WORD use record

 Carry_Bit at 0 range 0..0; -- bit 0

 Overflow_Bit at 0 range 2..2; -- bit 2

 Zero_Bit at 0 range 7..7; -- bit 7

end record;

CPU_STATUS : STATUS_WORD; -- define object

for CPU_STATUS use at 16#100#; -- define address of object

An example for tasks:

task RUNNING_SCORE is

 entry HIT; for HIT use at 16#020#;

 entry MISS; for MISS use at 16#040#;

end RUNNING_SCORE;

Object-Oriented Programming

 4 - 32

Operators

Precidence Operators Notes

 Highest ** not abs

* / mod rem Multiply operators

+ - Unary operators

+ - & Binary operators

= /= < <= > >= Relational operators

in not in Membership operators

and or xor Logical operators

 Lowest and then or else Short-circuit operators

Sample expressions:

PI -- a simple expression

(B**2) - (4.0 * A * C)

B**2 - 4.0*A*C -- same meaning as the above

CH in 'a' .. 'z' -- a boolean expression

24.2**3 -- a static expression

(not SUNNY) or WARM -- a boolean expression

not SUNNY or WARM -- same meaning as the above

not (SUNNY or WARM) -- different from above

"Hello" & " " & "Joe" -- string concatenation

b > 0 and then a/b < 5 -- short circuit boolean expression

Object-Oriented Programming

 4 - 33

Statements
A statement is a sequence of characters terminated by a semicolon (;).

Value := Value + 1; -- an assignment statement

Value

:=

2

; -- another assignment statement

Value := 2; -- same as the last statement

Object-Oriented Programming

 4 - 34

Statements, Continued
●● sequential control ●● iterative control

❍❍ assignment ❍❍ exit

❍❍ block ❍❍ loop

❍❍ null

❍❍ return ●● other statements

❍❍ procedure call ❍❍ abort

❍❍ accept

●● conditional control ❍❍ code

❍❍ case ❍❍ delay

❍❍ if ❍❍ entry call

❍❍ goto

❍❍ raise

❍❍ select

These are all the kinds of
statements recognized by Ada
compilers.

Object-Oriented Programming

 4 - 35

Statements: Sequential Control

●● assignment ●● null

Value := 1; null;

Value := ●● return

 SQRT(B**2 + A**2); return;

●● block return PI*2.0;

declare -- vars local to block ●● procedure call

 local_1 : integer; Text_IO.Put_Line("Hello");

begin -- code of the block Put ("Enter text: ");

 local_1 := 2; Stacks.Push(100.0, My_Stack);

 value := value / local_1;

end; -- end of the block

Object-Oriented Programming

 4 - 36

Statements: Conditional Control

●● if ●● case

 if Stop_Light = RED then case Value is

 Stop; when 1 | 3 | 5 | 7 | 9 => Kind := ODD;

 elsif Stop_Light = GREEN then when others => Kind := EVEN;

 Look_Both_Ways; Go; end case;

 elsif Stop_Light = YELLOW then case Value is

 Close_Eyes; Go_Fast; when 0 .. 9 => Kind := LESS_THAN_10;

 else when others => Kind := TEN_OR_MORE;

 Stop; Look_Both_Ways; Go; end case;

 end if; case Stop_Light is

 if Value > 10 then when RED => Stop;

 Value := Value - 10; when GREEN => Look_Both_Ways; Go;

 end if; when YELLOW => Close_Eyes; Go_Fast;

 when others => Stop; Look_Both_Ways; Go;

 end case;

Notes on Case Statements:

● The case expression must be of a discrete type (Integer or Enumeration).

● Every possible value of the case expression must be covered in one and

only one when clause.

● If the when others => clause is used, it must appear as a single choice at

the end of the case statement.

● Choices in a when clause must be static (able to be resolved at compile

time).

Object-Oriented Programming

 4 - 37

Statements: Iterative Control
●● two kinds of exit statements

exit; -- unconditional

exit when A = 0; -- conditional

●● three kinds of loops

loop -- simple loop while Status_Bit = OFF loop

 Bit := Status_Bit; null; -- while loop

 exit when Bit = ON; end loop;

end loop;

i := 42;

for i in 1 .. 20 loop -- for loop, outer I is hidden

 sum := sum + i;

end loop;

sum := sum + i; -- outer I is visible again

Object-Oriented Programming

 4 - 38

Blocks and Subprograms

●● Blocks, procedures, and functions contain three parts:

❍❍ an optional declarative part, in which local variables are defined

❍❍ an executable statement part, in which the code resides

❍❍ an optional exception handler

●● The declarative part contains declarations of types and subtypes,

variables and constants, procedures and functions, and packages.

●● The entities brought into existence in the declarative part only exist as

long as the block, procedure, or function in which they reside is active.

●● The executable statement part contains executable statements, such as

assignment or control statements.

●● The exception handler traps error conditions, or exceptions, and

processes them.

●● Procedures and functions are collectively called subprograms. A

subprogram is one of the four program units in Ada, where packages,

generic units, and tasks are the other three.

The Basic Differences Between Subprograms and Blocks

● Subprograms can be compiled separately, while blocks are embedded in some

larger unit which must be compiled as a whole.

● Embedded subprograms can only be placed in the declarative part of a unit,

while blocks can only be placed in the statement part.

● Subprograms can be invoked by a call, while blocks are invoked as part of the

flow of execution only.

Object-Oriented Programming

 4 - 39

Blocks

The general form of a block:

declare -- optional

 -- variable definitions

begin

 -- statements

 null;

exception

 -- exception handler

end;

Object-Oriented Programming

 4 - 40

Subprograms
Subprograms are the basic units of sequential execution in an Ada

system.

There are two classes of subprograms:

●● procedures -- accept and return values in parameter lists

●● functions -- accept values in parameter lists and only return one

value

Parameter lists contain three classes of formal parameters:

●● in -- parameter values are passed into subprograms

●● out -- parameter values are passed out of subprograms

(procedures only)

●● in out -- parameter values are passed both ways (procedures

only)

Object-Oriented Programming

 4 - 41

Subprograms: Functions

The general syntax of a function is:

function function_name (parameters) return type;

 -- function specification

function function_name (parameters) return type is -- body

 -- variable definitions

begin

 -- statements

exception

 -- exception handler

end function_name;

Examples of Functions and Function Calls

function Sin (Angle : in FLOAT) return FLOAT; -- spec

function Sin (Angle : in FLOAT) return FLOAT is -- body

begin

 null; -- detail omitted

 return 1.0; -- dummy return value

end Sin;

function Cos (Angle : FLOAT) return FLOAT; -- mode is 'in' by default

function "*" (Left, Right : in COMPLEX_NUMBER) return COMPLEX_NUMBER;

-- Examples of calls

X := Sin (2.2);

X := Cos(Angle => 45.2);

Y := Trig_Lib.Cos(X);

C3 := Complex."*" (C1, C2);

C3 := C1 * C2;

Object-Oriented Programming

 4 - 42

Subprograms: Procedures
The general syntax of a procedure is:

procedure procedure_name (parameters); -- spec

procedure procedure_name (parameters) is -- body

 -- local variables

begin

 -- statements

exception

 -- exception handler

end procedure_name;

Examples of Procedures and Procedure Calls

procedure Get_Status (Result : out STATUS); -- spec

procedure Get_Status (Result : out STATUS) is -- body

begin

 Result := OK;

end Get_Status;

procedure Create (File : in out FILE_TYPE; -- spec

 Name : in STRING := "DUMMY.TXT";

 Mode : in FILE_MODE := IN_FILE);

-- Procedure calls

Get_Status (Value);

Get_Status (Result => Value);

Create(FD);

Create (FD, Mode => OUT_FILE);

Create (FD, "T.T", INOUT_FILE);

Create (File => FD, Name => "Myfile.txt", Mode => IN_FILE);

Object-Oriented Programming

 4 - 43

Notes on Subprograms

●● Overloading: Subprogram names may be overloaded (i.e., two or

more subprograms may have the same names but different types or

numbers of parameters), and Ada can resolve these from context.

●● Recursion: A subprogram may call itself, or recurse.

Object-Oriented Programming

 4 - 44

Packages

A package is an encapsulation mechanism in Ada, allowing the

programmer to collect groups of entities together. As a rule, these
entities should be logically related. A package usually consists of

two parts: a specification and a body.

Packages directly support object-oriented programming, providing a
means to describe a class or object (an abstract data type).

A package may implement either an object as an abstract state machine (wherein the state

information is stored as hidden data in the package body) or a class using private data

types (wherein the state information is stored as private data associated with each

object).

package Console is -- abstract state machine

 type LOCATION is record

 row : INTEGER;

 col : INTEGER;

 end record;

 procedure Clear_Screen;

 procedure Position_Cursor (Where : in LOCATION);

 procedure Write (Item : in CHARACTER);

 procedure Write (Item : in STRING);

end Console;

package Complex is -- class definition

 type OBJECT is private;

 function Set (Real : in FLOAT; Imag : in FLOAT) return OBJECT;

 function Real_Part (Item : in OBJECT); function Imag_Part (Item : in OBJECT);

 function "+" (Left, Right : in OBJECT) return OBJECT;

 function "-" (Left, Right : in OBJECT) return OBJECT;

private

 type OBJECT_TYPE; -- deferred to body

 type OBJECT is access OBJECT_TYPE;

end Complex;

Object-Oriented Programming

 4 - 45

Package Specifications and Bodies

The general form of a package specification is:

package package_name is

 -- visible declarations

private

 -- private type declarations

end package_name;

The general form of a package body is:

package body package_name is

 -- implementations of code and hidden data

begin

 -- initialization statements

end package_name;

Object-Oriented Programming

 4 - 46

Uses of Packages

●● Collections of constants and type declarations

●● Collections of related functions

●● Abstract State Machines

●● Abstract Data Types

Object-Oriented Programming

 4 - 47

Notes on Packages
●● Package bodies may contain an optional initialization part. If this is

present, the code of the initialization part of a package is executed

before the first line of code in the mainline procedure.

●● Packages may be embedded in: blocks, subprograms, other

packages, and any program unit in general.

●● A private type is a type definition which is visible in the

specification of a package, but its underlying implementation is

hidden from the code withing the package and is of no concern to

the outside world.

●● Private types are the means of implementing abstract data types in

Ada. In a package containing a private type, the only operations

which may be performed on objects of that type are assignment,

tests for equality and inequality, and the procedures and functions

explicitly exported by the package.

●● In a package containing a limited private type, the only operations
which may be performed on objects of that type are the procedures

and functions explicitly exported by the package.

Object-Oriented Programming

 4 - 48

Generic Units
Generic subprograms and packages, which are templates describing

general-purpose algorithms that apply to a variety of types of data,
may be created in Ada systems.

Generic functions look like:

generic

 -- generic formal parameters

function function_name (parameters) return type; -- spec

Generic procedures look like:

generic

 -- generic formal parameters

procedure procedure_name (parameters); -- spec

Generic packages look like:

generic

 -- generic formal parameters

package package_name is -- spec

 -- normal package stuff

end package_name;

The bodies of generic functions and procedures are as for normal subprograms except

that the general types used in the specifications are employed rather than

conventional types.

An example:

generic

 type ELEMENT is private; -- anything that can be assigned may be used

procedure Exchange (Item1, Item2 : in out ELEMENT); -- spec

procedure Exchange (Item1, Item2 : in out ELEMENT) is -- body

 Temp : ELEMENT; -- temporary is of the same type as the parameters

begin

 Temp := Item1; -- this works for any thing that may be assigned

 Item1 := Item2;

 Item2 := Temp;

end Exchange;

Object-Oriented Programming

 4 - 49

Generic Formal Parameters

●● There are three kinds of generic formal parameters: types, objects, and
subprograms.

●● Types as generic formal parameters:

Type Parameter Operations Allowed Data Types

type T is private; = /= := All assignable

type T is limited private; --none-- All

type D is (<>); = /= := > >= < <= Discrete

PRED SUCC FIRST LAST

type I is range <>; integer operations Integer

type F is digits <>; real operations Float

type FIXED is delta <>; fixed point operations Fixed

●● Object declarations may appear as formal parameters.

●● Subprograms may appear as formal parameters.

Object-Oriented Programming

 4 - 50

Tasks

In Ada, one can write programs that perform more than one activity
concurrently. This concurrent processing is called tasking, and the

units of code that run concurrently are called tasks.

●● A simple format for task specifications and bodies:

task task_name; -- specification

task body task_name is -- body

 -- local variable declarations

begin

 -- code

end task_name;

●● A more complex format:

task task_name is -- spec

 entry entry_name (parameters);

end task_name;

task body task_name is -- body

begin

 accept entry_name (parameters) do -- code follows

 end entry_name;

end task_name;

The entry statement in the task specification identifies the entry points to the task.

The accept statement in the task body identifies the code to be executed at that

entry point. The entry points to a task are called like subprogram calls from other

program units.

Object-Oriented Programming

 4 - 51

Tasks That Rendezvous

The interfacing of two tasks in order to pass data is called a rendezvous

in Ada. The following is a representative timeline for two such tasks:

Calling Task

Acceptor Task
Execution of
accept statement

Concurrent processing
resumes

A B CEvents:

Key to Events --

A Acceptor task reached an accept statement and is waiting for
a call to its entry point.

B Calling task calls the Acceptor task at its entry point, and the

Acceptor task executes code in the accept statement.

C The accept statement is completed, data is transferred back
to the Calling task if necessary, and both tasks resume

concurrent operation.

Object-Oriented Programming

 4 - 52

Exceptions
●● Two kinds of errors are commonly encountered in programming:

compilation errors and runtime errors.

●● In Ada, runtime errors are called exceptions. Exceptions may be

predefined or user-defined. To define an exception:

Exception_Name : exception;

To raise an exception:

raise Exception_Name;

●● Exception handlers are Ada constructs that handle exceptions. An
exception handler is placed at the end of a block, subprogram,
package, or task, and is denoted by the keyword exception followed

by the text of the handler code. Example (for a block):

begin -- note that I is defined external to the block

 I := I / 0; -- division by zero

exception

 when NUMERIC_ERROR =>

 I := 10;

end;

Predefined Exceptions -- Package STANDARD

● CONSTRAINT_ERROR -- raised whenever a value goes out of bounds, such as assigning a

value of 11 to a variable whose type is in the range from 0 to 10

● NUMERIC_ERROR -- raised when illegal or unmanageable mathematical operations are

performed, such as dividing by zero

● STORAGE_ERROR -- raised when the computer runs out of available memory

● TASKING_ERROR -- raised when there is a problem with the multitasking environment, such as

calling a task which is no longer active

● PROGRAM_ERROR -- all other exceptions not covered by the above or other exceptions defined

by the user or some other package, such as reaching the end of a function without hitting a return

statement

Predefined Exceptions -- Package TEXT_IO

● DATA_ERROR -- encountered an input that is not of the required type

● DEVICE_ERROR -- malfunction in the underlying system, such as disk space being full

● END_ERROR -- an attempt was made to read past the end of a file

● LAYOUT_ERROR -- raised by COL, LINE, or PAGE if the value returned exceeds COUNT'LAST

● MODE_ERROR -- an attempt was made to read from or test the end of a file whose current mode

is OUT_FILE, or an attempt was made to write to a file whose current mode is IN_FILE

● NAME_ERROR -- the string given as a file name to CREATE or OPEN does not allow the

identification of an external file

● STATUS_ERROR -- an attempt was made to operate on a file that is not open or open a file that

is already open

● USE_ERROR -- an operation is attempted that is not possible for reasons that depend on the

characteristics of the external file

Object-Oriented Programming

 4 - 53

Exception Propagation

●● If the program unit that raises an exception does not contain an

exception handler that handles the exception, the exception is

propagated to the next level beyond the unit. This level varies,

depending on the unit raising the exception:

❍❍ If the unit is a mainline procedure, the Ada runtime environment

handles the exception by aborting the program.

❍❍ If the unit is a block, the exception is passed to the program unit

(or block) containing the block that raised the exception.

❍❍ If the unit is a subprogram, the exception is passed to the program

unit or block that called the subprogram.

●● The propagation path of an exception is determined at runtime.

●● To reraise the current exception in an exception handler, the statement

raise;

may be used.

Object-Oriented Programming

 4 - 54

Suppressing Exceptions

Ada performs many checks at runtime to ensure that array indices are

not exceeded, variables stay within range, etc. If these checks fail,
exceptions are raised.

This results in larger code and slower execution speed.

In certain real-time applications, where space and time constraints are

critical, runtime error checking may be too expensive. A solution is
to use exception suppression.

Exception suppression turns off runtime error checking. It is

implemented by a pragma (a compiler directive) called SUPPRESS:

pragma SUPPRESS (RANGE_CHECK);

 -- turns off range checking on array indices and variable values

pragma SUPPRESS (RANGE_CHECK, INTEGER);

 -- turns off range checking on integers only

pragma SUPPRESS (RANGE_CHECK, X);

 -- turns off range checking for a particular object

